Induction of Classification Rules by Granular Computing

نویسندگان

  • Jingtao Yao
  • Yiyu Yao
چکیده

A granular computing model is used for learning classification rules by considering the two basic issues: concept formation and concept relationships identification. A classification rule induction method is proposed. Instead of focusing on the selection of a suitable partition, i.e., a family of granules defined by values of an attribute, in each step, we concentrate on the selection of a single granule. This leads to finding a covering of the universe, which is more general than partition based methods. For the design of granule selection heuristics, several measures on granules are suggested.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INTERVAL ANALYSIS-BASED HYPERBOX GRANULAR COMPUTING CLASSIFICATION ALGORITHMS

Representation of a granule, relation and operation between two granules are mainly researched in granular computing. Hyperbox granular computing classification algorithms (HBGrC) are proposed based on interval analysis. Firstly, a granule is represented as the hyperbox which is the Cartesian product of $N$ intervals for classification in the $N$-dimensional space. Secondly, the relation betwee...

متن کامل

An Application on Text Classification Based on Granular Computing ∗

Machine learning is the key to text classification, a granular computing approach to machine learning is applied to learning classification rules by considering the two basic issues: concept formation and concept relationships identification. In this paper, we concentrate on the selection of a single granule in each step to construct a granule network. A classification rule induction method is ...

متن کامل

Rough-Mereology Framework for Making Medical Treatment Decisions Based on Granular Computing

The medical field is considered as one of the most significant research resources. It receives a significant interest from researchers in the field of informatics and medical experts. It has a tremendous amount of data on various diseases and their symptoms that causes difficulty in diagnosing diseases. Therefore, several medical approaches based on knowledge discovery in the database have been...

متن کامل

Induction of formal concepts by lattice computing techniques for tunable classification

This work proposes an enhancement of Formal Concept Analysis (FCA) by Lattice Computing (LC) techniques. More specifically, a novel Galois connection is introduced toward defining tunable metric distances as well as tunable inclusion measure functions between formal concepts induced from hybrid (i.e., nominal and numerical) data. An induction of formal concepts is pursued here by a novel extens...

متن کامل

Coarsening Classification Rules on Basis of Granular Computing

The task of classification, as a well-studied field of machine learning and data mining, has two main purposes: describing the classification rules in the training dataset and predicting the unseen new instances in the testing dataset. Normally, one expects a high accuracy for precisely descriptive use. However, a higher accuracy is intended to generate longer rules, which are not easy to under...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002